Duration (ns)

Introduction

| set out to bring the world of Intel Hardware Transactional Memory(HTM) to Go.
To make this happen, | would need to present the following items:

e Alibrary that made it easy to use HTM in Go

e Evidence that my primitives worked as intended and were special

® Some real-world gains in common data structures

Runtime (ns)

Background

Intel has implemented transaction memory features under the name Intel TSX.
Intel TSX contains two different instruction extensions, HLE and RTM, which approach HTM
from two different angles.

Simply put, HLE is designed as a drop-in replacement for current locks, whereas RTM allows
low level control of transactions.

| have implemented highly tuned Go primitives to make use of both HLE and RTM.

In the ideal HTM experiment, the new primitives are validated and exceed the expected
performance. The hash-map experiment (and AVL tree experiment) stand to demonstrate the
gains from using these primitives in real world applications.

A simple take away is that HTM can massively speed up reads or modifies, but often fails
during insertions, due to global data structure tampering.

Map 3000000-Read Performance

i NoMutex =
3500 — SystemLock
HLESpinLock
RTM
2000
500 —
2 el &l ol eF = & & &l = & g & gl &
Number of Goroutines
Chart 2. Test with Hash-Map Reads Only
Contact

J. Craig Hesling

Carnegie Mellon University
Email: craig@hesling.com
Website: http://craighesling.com

Duration (ns)

Hardware Transactional Memory in Go

(Go Library - SafetyFast!)

J. Craig Hesling

all Performance

SystemMutex
350 SpinMutex -
-~ SpinHLEMutex ‘
2 - SpinRTMWithPause lock SpinHLEMutex // Note: Argument attempts must be greater than 0
SpinRTMNoPause = lock.Lock() // func HLESpinCountLock(val, attempts *int32)
SpinRTMWithLibrary —* TEXT -HLESpinCountLock(SB),NOPTR|NOSPLIT, $0
e Wy a1 B MOVQ Val+O(FP) - CX
4 count =00 m[“wordl"] // Load attempt counter DX
m["wordl"] = count + 1 MOVQ attempts+8(FP), R8
lock.Unlock() MOVL (R8), DX
tryread:
Figure 1. Example of using the HLE lock replacement MOVL (CX), BX
| TESTL BX, BX
200 " ¢ := NewRTMContexDefault() R
-2 o e c.Atomic (() { DECL DX
Bae S0 e RO BT s oo NS oun ol e // Tf DX 1= 0, abort
count := m["wordl"] JNE tryread
- " TG o b JMP abort
% 9.0 m["wordl"] = count + 1 Fyachlite:
1 A }) MOVL $1, AX
N s s b Figure 2. Example of using the RTM transaction context XACQUIRE
A mitive XCHGL AX, (CX)
RN P ' TESTL AX, AX
‘N : INE tryread
M\ ¢ := NewLockedContext(new(SpinHLEMutex)) Shorts
50 — . ® c.Atomic(e // Write back attempt counter
Yo T Wonalh y o o S| MOVL DX, (R8)
tatlco G OV o e S ke - 1 count := m["wordl"] RET]
RS St pit s R S il s P i LA e e S R 3 oy LY m[“wordl"] = count + 1 Figure 4. Implementation of the HLE spin lock in Go ASM
. — =11z S I B N N B B B B B B - A -
ol 2T &l = wl ol gl gl I QT% E[= gl] =2l =1 }'f] =T &1 &SI £ gl JI &l gl =i =) })
SR PRI SYERS £ 28 §E NI g gL g g
i PN R R 8B Figure 3. Example of using the HLE transaction context
Chart 1. Ideal HTM experiment with custom primitive. This allows interoperability between RTM, HLE,
atomic primitives Number of Bins and normal system locks.
Map 3000000-Read/3000000-Update Performance Map 3000000-Read/3000000-Put Performance
. SystemLock —7* 5000 — SystemLock —7~
HLESpinLock~~ 3 HLESpinLock~~
) RTM - RTM -
3000 — .
£ 3000 -
- =
2
_ = "
2000 — =) .
1000 — >
1000 TR B
] = = 2 = N m ol =) = = = = = = " = =1 = = o m = =) = = = = = =)

Number of Goroutines

Chart 3. Test with Hash-Map Reads and Updates

Number of Goroutines

Chart 4. Test with Hash-Map Reads and Puts

Project Page

https://github.com/linux4life798/safetyfast

http://craighesling.com
https://github.com/linux4life798/safetyfast

