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Introduction

| set out to bring the world of Intel Hardware Transactional Memory(HTM) to Go.
To make this happen, | would need to present the following items:

e Alibrary that made it easy to use HTM in Go

e Evidence that my primitives worked as intended and were special

® Some real-world gains in common data structures
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Background

Intel has implemented transaction memory features under the name Intel TSX.
Intel TSX contains two different instruction extensions, HLE and RTM, which approach HTM
from two different angles.

Simply put, HLE is designed as a drop-in replacement for current locks, whereas RTM allows
low level control of transactions.

| have implemented highly tuned Go primitives to make use of both HLE and RTM.

In the ideal HTM experiment, the new primitives are validated and exceed the expected
performance. The hash-map experiment (and AVL tree experiment) stand to demonstrate the
gains from using these primitives in real world applications.

A simple take away is that HTM can massively speed up reads or modifies, but often fails
during insertions, due to global data structure tampering.
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Chart 1. Ideal HTM experiment with custom primitive. This allows interoperability between RTM, HLE,
atomic primitives Number of Bins and normal system locks.
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Project Page
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