
Mash
An Android Mortr.io Dashboard

By Craig Hesling

What is Mortr.io?

● Mortr.io is a distributed platform that manages communication between
applications and devices.

● Carnegie Mellon University has developed it’s schema and runs an
implementation on the sensor.andrew.cmu.edu machine.

Motivation

● Sensor/control networks are good for two things
○ Ease daily tasks
○ Study sensor data and phenomena
○ The common denominator is that both require human interaction

● What good is a sensor/control network if you must write code to even see
a light turn on and off?

● A sensor/control network needs to be tangible and ease to discover
● It needs an interface that can make daily routines easy and accessible
● It needs a basic interface that can test and manipulate the end points

Project Description

I have created an Android Dashboard
app for the Mortr.io framework
(Mash). Simple, effective, and easy to
use was the goal. Here are some core
features:

● Multiple ways to discover
devices in a Mortr.io network

○ Manually browse tree
○ NFC discovery
○ QR code discovery
○ Nearby BLE tag

discovery
● See last data published
● Send control commands
● Share devices with others

Outline

● App Walk Through

● Review of Design

○ UI

○ Backend

● Lessons Learned

● App Demo & Questions

App Walk Through

Beautiful Mash
Launcher Icon

Stole it from the Mortr.io project with
permission

http://dev.mortr.io/

Login

Login Features

● JID validity/sanity checking
● Ensure credential verification

Main Location

We open the MIO root directory by
default.

The MIO root is the highest level of the
MIO directory tree. All directories and
devices are accessible through the
root directory.

In it’s basic form, the MIO tree is
organized based on common physical
location names. As in, Building →
Floor → Room → Device.

tap

Lab Door device

We now have the option to check the
Lab Door state Data or Control the Lab
Door.

Going Back ←

We move back up the tree by tapping
the Android back button.

4x

Navigation Drawer

Although the root directory can reach
all nodes, it is not always the most
effective way to reach your device.
There are other way to categorize and
lookup the devices you are interested.

The Navigation Drawer is where you
select which method you would like to
use to lookup a device/location.

● Favorites
● Nearby
● QR

Favorites

The MIO structure contains a private
favorites directory for each user. It
houses nodes that you deem are
important and would like a shortcut to.

Nearby

Shows MIO devices and locations that
are being advertised by nearby Gimbal
Bluetooth Low Energy(BLE) beacons.

This is another way we try to shortcut
the lookup and discovery of devices
you are interested in.

Walk Toward Lab Door

QR

Quickly lookup a device/location by
scanning its QR code!

Side Note:
Notice that the screenshots were
taken on an older Android device. The
Mash app has been tested and
supports older Android 4.2 and later.

Scanning QR for
FORK012884551147
Occupancy Counter

NFC

Yet another way to quickly jump to a
location or device page is to tap a MIO
NFC tag.

Side Note:
NFC tags can be programmed to hold
lots of different information and URIs

Programmed with
the MIO device

“Lab Door”

NFC

Yet another way to quickly jump to a
location or device page is to tap a MIO
NFC tag.

The beauty behind this method is that
NFC supporting Android devices are
always ready to read an NFC tag, when
the screen is on and unlocked. This
means you can tap a MIO NFC tag on
any screen of Mash or some other
Android app. It doesn’t matter! It will
prompt you to open the MIO node.

This is my favorite lookup method.

Tap
Tag!

UI Feedback

Now is a great time to point out the
nice loading circles that appear
between screen loadings.

Review of Design

Major Design Split

User Interface

● io.mortr.mash.ui package
○ Contains all classes that interact with the

Android context in order to manipulate
graphical elements

○ Activities, Fragments, and Adapters

Backend

● io.mortr.mash.lib package
○ Contains classes whose primary mission

is to manage some state relating to the
Android app.

○ Settings managers, service managers,
special app URIs, and interface libraries

● io.mortr.mioj package
○ A Java non-specific library that connects

with the Mortr.io framework
● Gimbal Framework

Major Design Split

User Interface Backend

User Interface

User Interface

User Interface

User Interface

User Interface

User Interface

User Interface
MIOActivity
MIOFragment

● These are abstract classes that extend the
standard Android Activity and Fragment classes

● Extended by all local UI Activities and Fragments
● Defines a child-class usable instance of the MIO

Library, which is used to communicate with the
MIO Service and MIO framework

● Installs the login trigger for all Activities

Backend
MIOSavedCredentials MIOSavedSettings

Android’s
SharedPreferences

MIOSavedCredentials
MIOSavedSettings

● Simple managers/connectors for getting and
setting the app login credentials and app settings
respectively.

● Due to the simplicity of the interface, they are
used throughout the app

UI

Backend MIOService

MIOAndroidLibrary

UI

MIOJ Library

MIOService

● A Bindable Android Service that manages the
app’s sole MIOJ connection and interface

● Handles spawning and joining background
threads that call explicit network operations in the
MIOJ library

● Coalesces spurious/redundant
reconnect/connect actions and enforces thread
synchronization

● Does NOT auto retry requests
● Does NOT auto reconnect
● Note: No UI elements were harmed the making

Backend MIOService

MIOAndroidLibrary

UI

MIOJ Library

MIOAndroidLibrary

● This is the UI friendly interface for the MIOService
and MIOJ library

● All Fragments and Activities grab an instance
○ Binds to the local MIOService
○ Auto connect MIOService OR launch Login

● Tries to auto fix a broken connection and
reconnect

● Auto retries requests that fail due to connection
[big feature]

● Can interact with UI for Login Activity and
Connection status/retry Snackbars

Backend MIOService

MIOAndroidLibrary

UI

MIOJ Library

MIOAndroidLibrary
→Auto Retry Requests

1. This is so cool that I must elaborate
2. The UI requests data from MIOAndroidLibrary and

gives it a callback that can populate the UI with
the results asynchronously. This pair is a “Job”.

3. MIOAndroidLibrary will hold onto this “Job” while
the network is disconnected or if the Job fails for
a reason that may be fixable(network failure).

4. When the library fixes the connection, it reruns all
Jobs until they are considered done.

5. So, UI data to be strongly/dynamically tied to MIO

Backend
SensorAndrewURI

UI

SensorAndrewURI

● This is simply an abstracted URI parser for the
specific URI used for QR codes.

● Unfortunately, this format must differ from a
MIOURI by specification. (no control over this)

● Extra Info
Parses something like the following:
http://sensor.andrew.cmu.edu/#/device/03a4fdc
0-dce5-11e4-ba47-d7d35fb6b294

Backend
MIONode

● As previously mentioned, MIOService handles the
underlying MIOConnection and processes data
requests.

● The UI gets it’s requested data through a
MIOTreeNode object on callback

MIOTreeNode

MIOConnection

SMACK XMPP
Library

MIOService

UI

MIOAndroidLibrary

MIOJ

Backend MIONode

● The packet classes represent abstractly the raw
data entities in the Mortr.io framework.

● A MIONode is composed of the packet types
combined in a way to mimic the Mortr.io scheme

● A MIONode is the lowest level representation of a
Mortr.io event node. (Event node == directory or
device)

● A MIOTreeNode extends MIONode to be a more
functional model

MIOTreeNode

packet
classes

Backend

MIONode

● The provider classes are used by the SMACK
library to make sense of incomming and outgoing
Mortr.io schemed data

● They provide parsers to build packet types from
incoming MIO data

● They provide generators to build outgoing MIO
data from packet types

● Providers are registered with SMACK on init
● SMACK can then interfaces with MIONode using

native packet types

provider
classes

SMACK XMPP
Library

packet
classes

Backend MIONode

● The rest of the library helps abstract the XMPP
connection and MIO Event Nodes

● The most important take away is that the
MIONode’s procedures that trigger synchronous
network activity from SMACK are segregated and
explicit to allow users(ANDROID!) to explicitly
control when network operations will take place.
These methods are labeled fetch* and
setActuation.

MIOTreeNode

MIOConnection

SMACK XMPP
Library

Backend

The Gimbal BLE Beacon API

● The core reason I use the Gimbal API is because
it facilitates the delivery of the extra MIOURI
information when a location is visited. This
means that the app is dynamically able to
discover any number of new locations and MIO
Nodes. (adding new location-nodes is done via
Gimbal web manager)

● Pros
○ The Gimbal framework is quite

sophisticated.
○ You can setup virtual locations with lots of

configuration parameters.
○ Web interface gives you tons of statistics,

including battery level
● Cons

○ It can be slow to discover BLE beacons
○ It is mainly useful only for starting and

ending visit events, although you can get
realtime beacon siting data

● The MIOURI is encoded into the extra “properties”
of a “visit” event.

Lessons Learned

Android Consideration

● The interface laid out by Android doesn’t give a basic Java procedural
option

● You are forced to use some “non-basic” Java features.
○ Inheritance(extends) and implements
○ asynchronous callbacks

● Must learn lots all Android quirks
○ The Activity instance object isn’t saved only the bundle
○ No synchronous network actions on UI thread
○ Android Services simplify and modularize the task(but are far from perfect vs. static)

Encapsulation vs. Containment

● Containment
○ Easier to implement, but can expose a complex interface
○ Can expose more advanced control of contained instances

● Encapsulation
○ Gives solid separation of underlying interfaces and variables
○ Can expose simpler interface to user
○ More time consuming to implement and can seem redundant at times

Inner Class vs. Outer Class

● Use inner class when the class functionality is associated with it’s
encapsulating class

● Use a new file with an outer class when the functionality can be used by
other classes or is too complex to hide in file shared by another class.

● To be honest, it really depends and that is why I titled this something vs.
something.

Inheritance Examples

All activities extend the MIOActivity MIOTreeNode actuall “extends” the functionality
of MIONode. It adds more encapsulation type
features and hides the lower level details.

Containment Example

MIONode simply provides the container for the hierarchical data and the
methods to fetch it. The getters simply grab the contained instances.

Encapsulation Example

MIOTreeNode provides high level methods to access data inside it’s
encapsulated instance variables

Abstract Example

MIOActivity is an abstract class in order to denote that it cannot be
instantiated. It must be extended.

Inner Class Example

MIOReferences uses an inner class to help organize references. References are
a product of the encapsulating MIOReferences class.

Synchronization Example

Synchronization is use in MIOService to ensure the async background threads
are not conflicting with one another.

Async task starts and then
unlocks stateChangeLock when
finished

Interface Example

Many interfaces are used and defined
in the MIOJ library and in the Mash
app.

The simplest to understand is the
FetchNodeResultCallback in
MIOService. It simply asks the user to
provide the callback method for when
the node data is available.

Additional Remarks

● The lesson learned on using separate Java packages should have been
evident when we walked through the “Review of Design”.

● The lessons learned on using separate files vs. combined/anonymous
classes should be evident from “Review of Design” as well. I have clearly
separated Activity-Fragment-Adapters.

● I feel I have implement this app and supporting libraries using the most
accepted object oriented practices. If you see room for improvement,
please leave me feedback in any form.

Product Demo & Questions

